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It is shown that any second-order differential system admits a variational formula- 
tion via the introduction of suitable additional variables. The new variables are 
related to the existence of invariant 1-forms and to solutions for the adjoint of 
the equations of variation of the given system. The connections among invariant 
forms, constants of motion, and infinitesimal invariance transformations are then 
discussed in some detail. 

1. I N T R O D U C T I O N  

Consider  a system of  n second-order  ordinary differential equat ions 
o f  the form 

~'-F~(t,q,(l)=O, i=l , . . . ,n  (1) 

where " denotes as usual  the total d/dt derivative and each F ~ is supposed  
to be a regular funct ion o f  its arguments.  As is well known,  the system (1) 
admits a variational formula t ion  only if  it is self-adjoint (Santilli, 1978; 
Crampin,  1981). This means that  the functions F ~ satisfy a set o f  quite 
stringent condit ions,  which have been extensively analyzed in a number  o f  
papers (see, e.g., Santilli, 1978; Caviglia, 1985b and the cited references). 

Nevertheless,  Lagrangian representations of  some non-self-adjoint  sys- 
tems have already been developed (Morse et al., 1953; Tikochinsky,  1978; 
Greenberger,  1979); they are based on a trick consisting essentially in the 
introduct ion o f  addit ional  variables that  are related to the q 's  by  a suitable 
set o f  differential equations.  In  this way a Lagrangian funct ion yielding 
both  the original system and the added  equations is found,  at the sacrifice 
o f  a certain amount  o f  "real i ty"  in some o f  the incident results, such as, 
e.g., the introduct ion o f  an oscillator with negative friction in a specific case 
(Morse et al., 1953). 
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It is shown in this work that any system (1) may be derived from a 
variational principle of the above type (Section 2). The possible meaning 
of the added variables is then discussed in some detail. In particular, the 
geometric origin of these variables as generators ofinvariant forms is brought 
into evidence, and it is also shown that they are related to the symmetries 
of the given dynamical system in such a way that allows for extension to 
infinite dimensions (Section 3). The resulting role of the new variables as 
generators of conserved quantities is also examined (Section 4). 

2. VARIATIONAL PRINCIPLES 

Consider the following action functional: 

I 
t 

j ( q ,  ~) .i" i = ( q s e i + F l j i )  dt  
to 

(2) 

The requirement of stationarity for J under variations of the q's and of the 
~'s leads to equations 

[ OFi \  OF i 
(3) 

and (1), respectively. In particular, the system (1), (3) is self-adjoint, because 
it has been derived from a variational principle (Santilli, 1978). Thus we 
may also assert that when equations (3) are joined to the original set (1) 
we obtain a second-order system satisfying the conditions for the existence 
of a formulation in terms of Hamilton's principle. 

Actually, the functional J cannot be regarded as providing a variational 
formulation for (1) in a strict sense, because it requires the introduction of 
the auxiliary variables ~. Yet it is to be remarked that the possibility of 
finding variational principles by addition of new variables has been rather 
explored in the literature (Hojman et al., 1981; Leipholz, 1980; Morse et 
al., 1953; Tikochinsky, 1978; Greenberger, 1979; Thangaray et al., 1983); 
in particular, linear systems have been extensively analyzed by Bahar and 
Kwatny (1984), whereas it turns out that the functional J may be reduced 
to the form of a so-called composite variational principle (Atherton et al., 
1975) by means of an integration by parts. 

The present investigation is mainly devoted to the discussion of an- 
other major problem which arises within the present framework: specifically, 
it is concerned with the meaning to be attributed to the auxiliary variables 
~:, which are usually introduced on rather unnatural and purely formal 
grounds. The following examples will clarify this point. 
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Consider the one-dimensional oscillator with friction, having the 
equation of motion 

/1 + e4 + vq = 0 (4) 

Then the action functional J reads 

J(q, ~) = [ q ~ -  (et) + uq)~] dt (5) 
to 

whereas (3) reduces to 

- e/: + v~ = 0 (6) 

so that the added variable ~ has been interpreted as representing the 
evolution of  a "mirror image" oscillator with "negative" friction (Morse et 
al., 1953). 

As a second illustrative example, consider the equation for the geodesics 
of a linear symmetric connection, which is known to model the evolution 
of holonomic rheonomic systems in n degrees of freedom (Trumpet, 1983). 
This equation reads 

q ' +  rjk4'4 ~ = 0 (7) 

where the rjk's are the connection coefficients and t is any affine parameter; 
the corresponding action functional can be cast into the form 

I' I' J(q, ~)= ( 0 ~ -  F~k0J0k~) dt= 4~D~/Dtdt  (8) 
to to 

yielding the variational principle for the geodesics of the given connection 
already introduced by Trumper (1980). In this case the interpretation of 
the added variables is more natural, in the sense that they may be reduced 
to already known geometric objects. In fact (3) may be written as an equation 
of geodesic deviation, namely, 

D2~h/Dt2+ p " i ' j  R~hj~pq q = 0 (9) 

where R is the curvature tensor of  the given connection. Thus the auxiliary 
variables identify a Jacobi covector (Schattner et al., 1981) as well as the 
related first integral (Trumper, 1983) 

(ff D~k/ Dt = (lk( ~'k --FPh~p{l h) (10) 

which is essentially the Jacobi integral for the dynamical system modeled 
by the action functional (8). 

Now it is to be recalled that Jacobi covectors are strictly connected to 
the description of invariance properties of the geodesic equation (Caviglia, 
1983a,b); this observation suggests the most appropriate setting for the 
study of added variables, and motivates the analysis which is given in the 
following section. 
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3. A D J O I N T  VARI ABLES 

The system (1) may be associated with the vector field 

of the (2n + 1)-dimensional 

= O +  .i O i 0 
Ot q ~ q i + F - ~  (11) 

extended tangent space E, referred to local 
natural coordinates (t, q, q): the flow of F yields the totality of solutions to 
(1) and conversely (Sarlet et al., 1981). 

Consider now a 1-form a of E with local expression 

a = h d t +  rh dq ~ + ~ dq ~ (12) 

and denote by ~fr the Lie differentiation operator along F. Making use of 
(11) and (12) it follows that the condition 

is equivalent to 

~ r a = 0  (13) 

8 F  i 
'~ + ~ Ot = 0 (14a) 

OF ~ 
~Jj + ~i~--~qj = 0 (14b) 

OF ~ 
~ + ~Tj + ~:i-0-~ = 0 (14c) 

Then it is easily seen that the restriction of the components ~:~(t, q, 0) to 
any integral curve of F yields a solution to the adjoint system (3), provided 
(13) holds. In fact (14b) reduces to (3)--up to a change in sign--after 
substitution of the expression for r b obtained from (14c). Conversely, each 
set of functions ~i(t, q, dt) fulfilling (3) on every solution to (1) identifies an 
invariant 1-form a. Specifically, (14b) is automatically satisfied, provided 
~Tj is defined in terms of ~ through (14c), and ;t is" determined as a solution 
to (14a). Notice that it is not restrictive to set h =0  whenever the F " s  are 
independent of t. 

In summary, every 1-form which is invariant along the flow of F can 
be made to correspond to a set of  added variables, and conversely. When 
the special case of the geodesic equation is considered, it follows in particular 
that Jacobi covectors can be looked at as invariant 1-forms of E, and 
conversely. Consequently, it could be shown that invariant 1-forms depend- 
ing polynomially on O h can be associated with the Killing tensors of the 
given linear connection, by slightly modifying the proof  of similar statements 
holding for dynamical symmetries (Caviglia, 1983a,b; Prince et al., 1984). 
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In order to describe an alternative interpretation for the r we need 
the concept of dynamical symmetry, defined as a vector field Y on E which 
is the infinitesimal generator of a local 1-parameter group of transformations 
permuting the integral curves of F, i.e., such that ~ r  is proportional to 
F. Clearly, dynamical symmetries are defined up to a multiple of F (Sarlet 
et al., 1981). Thus it follows that if f" is any dynamical symmetry, then 
Y =  I7"-~F is an equivalent dynamical symmetry; therefore, if we choose 
as r the O/Ot component of f', then Y may be represented as 

and we get 

~O i 0  Y=K-~q~+Hor (15) 

~ v F  = 0 (16) 

Moreover, on writing the explicit expression for ~ v F  it is found that (16) 
is equivalent to 

H i = R  * (17) 

- F  i - F  i 
M i ( K )  = - ~  K h - O r '  I ~ h - I - g i = o  (18) 

3q h O0 h 

In particular, (17) may be regarded as the definition of H i in terms of K i, 
so that (18)--which has been written taking into account (17)--yields the 
characterization of the dynamical symmetry Y. 

Alternatively, it may be shown that the infinitesimal perturbation 

q i=  q ,+  eKi( t, q, gl) (19) 

leaves equations (1) invariant--up to terms of order e2--itt the generators 
K i satisfy condition (18) (Caviglia, 1985a). In this sense, the definition of 
dynamical symmetry coincides with the so-called equations of variation for 
(1) (Santtlli, 1978), and the components K ~ may be regarded as generators 
of infinitesimal symmetry transformations. 

Consider now the adjoint to Mi(K) ,  say ~/i(r which is defined by 
the condition (Santilli, 1978) 

/ OF' a _ ~,K i) ~iM'( K ) - K i)~I,( r = ~ -  r K + r ' (20) 
I 

On comparing (18) and (3) it is easily seen that Mi(~:) does coincide with 
the left-hand side of equation (3). Accordingly, we conclude that the system 
(3) is formed by the adjoint equations to the equations of variation for 
(1)--or to the definition of dynamical symmetry--in the technical sense of 
the term adjoint. Of course, equations (3) coincide with the adjoint equations 
of (1) under the additional assumption that the given system is linear, in 
which case our analysis reduces to already known results (Bahar et al., 1984). 
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As a comment, let us firstly point out explicitly that our approach has 
also shown the connections between invariant forms and solutions to the 
adjoint of the equations of variations. Secondly, the formulation in terms 
of infinitesimal perturbations can be extended straightforwardly to com- 
posite variational principles of nonlinear field theories, where, of course, 
equation (20) is to be replaced by the so-called Lagrange identity. This will 
be the subject of a forthcoming paper. Thirdly, the.previous interpretation 
relating the adjoint variables r to invariant forms brings into evidence their 
role as generators of conservation laws (Caviglia, 1984), which is examined 
in the next section. 

4. CONSERVATION LAWS AND FINAL COMMENTS 

The previous interpretations of the meaning of the additional variables 
give rise to alternative approaches to the problem of generating conserva- 

tion laws. Perhaps, the geometric formulation is simpler, so that we will 
discuss it in some detail. 

It is an immediate consequence of (13) that 

I 1 ~-(r ,  OL)=J~ -t-{]i'qi-t-Fi~i (21) 

is conserved on each solution of (1), since ~ r I~=0 .  To comment on the 
meaning of Ix it is to be noticed that I1 reduces to the opposite of the first 
integral (10) in the specific case of geodesic motion. Also important for 
practical purposes is the observation that 11 is written entirely in terms of 
the given invariant form a. In this respect, the approach to constants of 
motion by means of invariant forms should be regarded as particularly 
worth trying. To appreciate its effectiveness, it suffices to note that commonly 
proposed methods for associating constants of motion with dynamical 
symmetries require either the solution of an additional differential equation, 
when they are based on Noether theorem (Sarlet et al., 1981), or the 
introduction of stringent assumptions such as: there exists an invariant 
volume form (Crampin, 1980), there exist suitable differential forms (Gon- 
zalez-Gascon et al., 1980), equations (1) may be derived from a variational 
principle (Caviglia, 1984). 

Further constants of motion can be associated with invariant 1-forms 
provided at least one symmetry transformation is given. Actually, it follows 
from (16) and the properties of the Lie derivative that the quantity 

I2=(Y, a ) = / ( i ~ i - K i ( ~ i +  oFh\  hV) (22) 
is a constant motion. If  the equation of motion is the geodesic equaion  (7) 
then Y identifies a Jacobi vector on each geodesic (Caviglia, 1983a,b; Prince 
et al., 1984), and /2 can be shown to coincide with the already known 
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(Trumper, 1983; Caviglia, 1983a) conserved quantity ~ D K ~ / D t -  
K~D~i/ Dt. 

Turning to general considerations, it is to be remarked that the previous 
discussion can be reinterpreted in terms of Crampin's (1983) approach to 
non-Noether  constants of motion by noting that Y and a are nothing but 
the generators of a type (1, 1) tensor field A =  Y |  such that S~rA=0. 
Then the trace of A and of  its powers, i .e.,/2 and its powers, are conserved 
along any integral curve of  F. Moreover, we may also recall that (1, 1) 
tensors with vanishing Lie derivative along F give rise to a Lax pair (Carinena 
et al., 1985), which in turn is related to the complete integrability of the 
given system (De Filippo et al., 1984; Antonini et al., 1985), to infer the 
existence of  relationships between the definition (16) of dynamical symmetry 
and its adjoint (3) on the one hand, and the aforementioned complete 
integrability on the other, which should deserve further investigation. 

To conclude, we would like to emphasize the following point. If  the 
approach to conservation laws is based on the fact that the system (3) is 
the adjoint system of (18), then the Lagrange identity (20) yields immediately 
the first integral /2. On the contrary, the determination of 11 is not so 
straightforward because I1 depends both on the ~'s and on A, the latter 
being determined as a solution to (14a). Nevertheless, the construction of 
I1 may be achieved without having explicit recourse to invariant forms, by 
manipulations of the equation which is found by contraction of (3) with 
qh, provided a solution to (14a) is given. Therefore it could seem that the 
approach to the added variables in terms of  adjoint equations is not 
convenient and may be rejected in favor of the equivalent geometric formula- 
tion, which could also benefit from a great number of recent developments 
in the field. However it is to be emphasized that just the former approach 
can be extended quite straightforwardly to continuum mechanics and field 
theories, as it will be shown in detail in a forthcoming paper. Thus an 
analysis of the relationships between the two formulations is required to 
suggest the most appropriate procedures for the construction of conservation 
laws within the framework of field theories. 
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